The SAP Lock Concept (BC-CST-EQ)

Purpose

The SAP System is equipped with a special lock mechanism that synchronizes access to data on

the database. The purpose of the lock mechanism is to prevent two transactions from changing

the same data on the database simultaneously.

Implementation Considerations

Locks are defined generically as "lock objects" in the Data Dictionary. A lock request is a specific

instance of a lock object and locks a certain database object, such as a correction or a table

entry.

Lock entries are usually set and deleted automatically when user programs access a data object

and release it again.

Integration

The SAP lock mechanism is closely related to the update mechanism in R/3 [Page 109]. A

description of handling lock objects is provided in the ABAP Dictionary Documentation under

Lock Objects [Ext.].

The ABAP documentation explains the key elements of the lock concept with regard to

programming ABAP transactions in the section entitled The R/3 Lock Concept [Ext.].

Features

You can use the Lock Management [Page 98] functions (transaction SM12) to check and delete

lock entries if the SAP dispatcher, operating system, or network connection fails and the

dispatcher is not able to delete these entries. In this case, invalid lock entries remain effective

and block access to the locked data when the system is restarted.

For a better understanding of the R/3 lock concept, please refer to the section entitled Functions

of the SAP Lock Concept [Page 77].

The most important profile parameters for the R/3 lock concept are described here [Page 96].

You can use these parameters to tailor your system resources to your needs.
Functions of the R/3 Lock Concept

This section explains how the R/3 mechanism is implemented. It provides background information that will help you understand and apply the lock management concept. The specific options with regard to handling R/3 locks are described under Managing Lock Entries [Page 98].

R/3 Lock Logic

If an R/3 transaction is to make changes to database objects, the programmer of the transaction

must lock the objects first to prevent concurrent access and then release them again. To do so, he or she must define and activate a lock object in the Data Dictionary (see Lock Objects [Ext.] in the Data Dictionary documentation). Activating a lock object causes the system to generate two function modules: one for locking the object, and one for releasing it. This procedure is described in detail under Lock Mechanism [Ext.] in the ABAP Dictionary documentation.

Lock Server

In a distributed R/3 System, one lock server (also referred to as the enqueue server) manages

the lock table [Page 84]. This server runs on the central instance.

If a lock is to be set in an application running on an instance other than the central instance (for

example, on a different host), the lock request is transferred via the dispatcher [Ext.] and

message server to the dispatcher of the central instance, which then forwards it to the enqueue

work process. This process then checks the lock table to determine whether the lock request

collides with an existing lock (see also Lock Collisions [Page 87]). If this is the case, the request

is rejected. Otherwise, the lock is set and an appropriate entry is made in the lock table.

The work processes on the central instance have direct access to the lock table

functionality. This means that they do not have to send their lock requests via the

dispatchers and message servers.
Locks and R/3 Update

During the course of the transaction, the lock is transferred to the update in R/3 [Page 109]. This

procedure is described in detail under The Owner Concept [Page 81] and Function Modules for

Lock Requests [Ext.]. Locks that have been transferred to the update are stored both in the lock

table and in a backup file so that they are not lost if the enqueue server fails. The backup flag is

then set in lock management.

SAP Locks and Database Locks

The following graphic shows the relationship between SAP locks and database locks. The

objective here, naturally, is to minimize the duration of a database lock. In addition, unlike

database locks, an SAP lock can exist across several database LUW. The difference between

SAP LUW and database LUW is described under Functions of the Update Task [Page 110].
The Lock Table

Definition

The lock table is a table in the main memory of the enqueue server that records the current locks

in the system. For each elementary lock, the table specifies the owner, lock mode, name, and the

fields in the locked table.

Use

The lock table is used to manage locks. Every time the enqueue server receives a lock request,

the system checks the lock table to determine whether the request collides with an existing lock

(see Lock Collisions [Page 87]). If this is the case, the request is rejected. Otherwise, the new

lock is written to the lock table.
Lock Collisions

The check to determined whether a lock request collides with an existing lock is carried out in two

steps: first, the system checks whether the lock request collides with an elementary lock in the

lock table [Page 84]. If this is the case, the system checks whether an owner collision exists.

(The same owner can request a write lock more than once, for example. This is described under

Cumulation of Locks [Page 90].)

If a collision exists, the user of the dialog transaction receives a message indicating that the

requested object is currently locked by a different user. In the case of non-dialog processes (such

as batch inputs), the lock request is resubmitted later.

Collisions between Elementary Locks

Two elementary locks collide if all of the following conditions are fulfilled:

_ The name of the elementary lock (table in which the lock is to be set) is the same

_ The lock argument is the same, or more precisely: the letters in each position are identical

(the wildcard symbol (@) is identical to all letters)

_ At least one element lock does not have lock mode S (read lock) 
If the elementary locks do not collide, the lock request is added to the lock table as a new entry. If

the elementary locks do collide, however, the system checks for an owner collision (described in

the following section).

Owner Collision

If elementary locks collide, a decision is made whether to accept or reject the lock request based

on the owner of the locks (see The Owner Concept [Page 81]).

An owner collision exists if one of the following conditions applies to an elementary lock collision:

_ At least one owner is different

_ The owners are identical but at least one lock has mode X (extended write lock, no

cumulation, see also Lock Mode [Ext.])

Cumulation of Locks

As described under Lock Mode [Ext.], there are three types of locks:

_ Shared (read lock): several transactions can set a read lock simultaneously (to read data that

is not changed)

_ Exclusive (write lock): simultaneous read or write locks for this object are rejected; only the

same owner (see The Owner Concept [Page 81]) can request the lock again. This is referred

to as cumulation.

_ EXclusive, lock that cannot be cumulated (extended write lock): this lock also can only be

requested once by the same owner.

The type of lock selected is determined by the programmer of the transaction when the lock

object is created. A lock can be set more than once (cumulation), if the name, argument, and lock mode of the elementary lock are identical. The cumulation counter is incremented by one with each successive cumulation and reduced by one each time a lock is released. The lock is released when the counter reaches zero
